If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=55/36
We move all terms to the left:
x^2-(55/36)=0
We add all the numbers together, and all the variables
x^2-(+55/36)=0
We get rid of parentheses
x^2-55/36=0
We multiply all the terms by the denominator
x^2*36-55=0
Wy multiply elements
36x^2-55=0
a = 36; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·36·(-55)
Δ = 7920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7920}=\sqrt{144*55}=\sqrt{144}*\sqrt{55}=12\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{55}}{2*36}=\frac{0-12\sqrt{55}}{72} =-\frac{12\sqrt{55}}{72} =-\frac{\sqrt{55}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{55}}{2*36}=\frac{0+12\sqrt{55}}{72} =\frac{12\sqrt{55}}{72} =\frac{\sqrt{55}}{6} $
| z^2+3z=28 | | -9+x/3=-12 | | 2+4g=12 | | 4u^2=15u-14 | | 3y-63=2y-24 | | 8s+22=s+29 | | 4560=8w | | 2u+75=5u | | 130=10(-7+n) | | w+40=3w+26 | | -x^2+30x-125=0 | | 4s-3=6s-9 | | -16t^2+150t+750=0 | | 0.8-2t=1=3t | | 4w+58=2w+88 | | 0=-16t^2+150t+750 | | v+14=5v-46 | | v/5=331.25 | | 2x-6/20=36/x+6 | | 6750=11w | | x+2=-0,8x+2,8 | | 3x+32=4x+19 | | 2r+2=29-r | | 9k+11=20k-11 | | 2/11x=-14.5 | | 20x+2=x+40 | | C=3+2.50m | | 75x=25x+500 | | x^=400/169 | | z9+6=−80 | | 80+2-x2=x | | 4840=11w |